Using Spatial Uncertainty of Prior Measurements to Design Adaptive Sampling of Elevation Data

نویسندگان

  • S. Abd Aziz
  • B. L. Steward
  • M. Karkee
چکیده

Field sampling can be a major expense for planning within‐field management in precision agriculture. An efficient sampling strategy should address knowledge gaps, rather than exhaustively collect redundant data. Modification of existing schemes is possible by incorporating prior knowledge of spatial patterns within the field. In this study, spatial uncertainty of prior digital elevation model (DEM) estimates was used to locate adaptive re‐survey regions in the field. An agricultural vehicle equipped with RTK‐DGPS was driven across a 2.3 ha field area to measure the field elevation in a continuous fashion. A geostatistical simulation technique was used to simulate field DEMs using measurements with different pass intervals and to quantitatively assess the spatial uncertainty of the DEM estimates. The high‐uncertainty regions for each DEM were classified using image segmentation methods, and an adaptive re‐survey was performed on those regions. The addition of adaptive re‐surveying substantially reduced the time required to resample and resulted in DEMs with lower error. For the widest sampling pass width, the RMSE of 0.46 m of the DEM produced from an initial coarse sampling survey was reduced to 0.25 m after an adaptive re‐survey, which was close to that (0.22 m) of the DEM produced with an all‐field re‐survey. The estimated sampling time for the adaptive re‐survey was less than 50% of that for all‐field re‐survey. These results indicate that spatial uncertainty models are useful in an adaptive sampling design to help reduce sampling cost while maintaining the accuracy of the measurements. The method is general and thus not limited to elevation data but can be extended to other spatially variable field data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Performance of Adaptive Web Sampling and General Inverse Adaptive Sampling in Estimating Olive Production in Iran

Nowadays, there is an increasing use of sampling methods in network and spatial populations. Although the most common link-tracing designs such as adaptive cluster sampling and snowball sampling have advantages over conventional sampling designs such as simple random sampling and cluster sampling, these designs still present many drawbacks. Adaptive web sampling is a new link-tracing design tha...

متن کامل

Determination of Optimal Sampling Design for Spatial Data Analysis

Extended Abstract. Inferences for spatial data are affected substantially by the spatial configuration of the network of sites where measurements are taken. Consider the following standard data-model framework for spatial data. Suppose a continuous, spatially-varying quantity, Z, is to be observed at a predetermined number, n, of points ....[ To Countinue Click here]

متن کامل

Determination of Spatial Distribution Pattern Analysis of Acer Velutinum Species in two Elevation Classes using Distance Sampling Methods (Case Study: Asalem Nav Forests, Series No. 2)

One of the important features of plant communities is the spatial pattern of trees. The spatial pattern of the stands determined by measuring and positioning of trees in the stands and inserting them in analytical frameworks. This is because spatial information allows natural resource managers to make and perform better-informed decisions, -. The aim of this study was to assess the spatial patt...

متن کامل

Assessment of uncertainty for coal quality-tonnage curves through minimum spatial cross-correlation simulation

Coal quality-tonnage curves are helpful tools in optimum mine planning and can be estimated using geostatistical simulation methods. In the presence of spatially cross-correlated variables, traditional co-simulation methods are impractical and time consuming. This paper investigates a factor simulation approach based on minimization of spatial cross-correlations with the objective of modeling s...

متن کامل

Fractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances

In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010